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Abstract—Electronic health record systems used in clinical set-
tings to facilitate informed decision making, affects the dynamics
between the physician and the patient during clinical interactions.
The interaction between the patient and the physician can impact
patient satisfaction, and overall health outcomes. Gaze during
patient-doctor interactions was found to impact patient-physician
relationship and is an important measure of attention towards
humans and technology. This study aims to automatically label
physician gaze for video interactions which is typically measured
using extensive human coding. In this study, physicians’ gaze is
predicted at any time during the recorded video interaction using
optical flow and body positioning coordinates as image features.
Findings show that physician gaze could be predicted with an
accuracy of over 83%. Our approach highlights the potential for
the model to be an annotation tool which reduces the extensive
human labor of annotating the videos for physician’s gaze. These
interactions can further be connected to patient ratings to better
understand patient outcomes.

Index Terms—physician gaze, primary care visits, patient-
physician interaction, healthcare technology, computer vision,
gaze recognition, optical flow

I. INTRODUCTION

Recent advancements in health information technology
(HIT) in the primary-care settings have both positive and
negative impacts on patient care. Electronic health records
(EHR) in clinical primary care settings provide accessible
and accurate information about the patient to the physician.
EHRs supports informed decision-making and medication
management. Although some studies find that EHRs reduce
medical errors, provide better flow of information and better
documentation of patient health records, their presence in
the clinical care settings can complicate clinical encounters
and impact patient outcomes [1]. Several studies identify
negative impact of EHRs on patient-physician interactions. For
example, physicians tend to spend more time on technology
rather than spending the time with patients [2] [3]. The com-
munication between the patient and the physician is reduced
due to the use of computers and adds to mutual silence while
documenting [4] - [8]. EHRs can alter the way physicians
work – where physicians give their visual attention to the
technology present in the clinic rather than eye contact with
the patient, potentially affecting the patient’s communication
with the doctor [5]. EHRs have been identified as an important
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component in physicians’ burnout and affects the physicians
to the extent of leaving the practice [9] - [11].

Better understanding of the physicians’ use of technology,
and of the patient-physician communication and the asso-
ciated patient outcomes is paramount. The patient-physician
interactions can be categorized as verbal and non-verbal. The
components of non-verbal interaction are facial expressions
(eyebrow raising, gazing, and smiling), body posture (posi-
tioning of arms and legs), and hand gesturing (scratching,
thumbs up, hand clenching) [12]. Physician gaze is an impor-
tant non-verbal feature and patient emotional distress could
be identified through higher levels of patient-directed gaze
[13]. Identifying physician gaze of recorded patient-physician
interaction has traditionally involved manual human coding.
Manual video annotations are often time-consuming, labor
extensive, context dependent and highly subject to the biases
of human annotations [12] - [14]. Hence, this work aims to
build a model to retrieve information on physician gaze on a
frame level basis. This work can further be expanded to more
interactions in the study leading to a robust understanding of
patient outcomes in different clinical settings.

II. RELATED WORK

Previous work by Gutstein et al. [15] - [17] used video
recorded patient-physician interactions to extract motion infor-
mation of the physician and the patient through optical flow al-
gorithm [21] and You Only Look Once (YOLO) algorithm [20]
to predict physician gaze. Gutstein et al., studied 6 interactions
each from 2 doctors and 5 interactions from another doctor
adding up to a total of 17 interactions. Three doctor- specific
models were built using an AdaBoost algorithm and reported
high performance in predicting physician gaze. The work
posed several limitations due to the nature of clinical settings
and camera angle. The most common issue was that of the
doctor missing from one of the camera views which resulted in
loss of up to 76% of frames from analysis and resulted in low
generalizability power to other videos capturing interactions
of these three doctors with other patients. Another limitation
of the work was the performance of these doctor-specific
models on interactions from other doctors. Although the doctor
specific models presented by Gutstein et al. produced high
performing results, these models did not generalize well on
clinical interactions which included a different doctor.978-1-7281-8579-8/20/$31.00 ©2020 IEEE



Fig. 1. Interaction video data: example of Patient-Centered, Doctor-Centered, Wide-Angle, and Multi-Channel videos from a particular time [15] [17]

This study is an extension of the work done by Gutstein
[16] [17] and addresses the two limitations posed. We address
the first limitation by careful analysis of feature importance
and removal of doctor specific motion information from one
of the camera views. These removed features were found to
be redundant by careful feature selection techniques and the
removal of these features did not decrease the model perfor-
mance. By removal of these features, the new methodology
could be extended to all the 101 interactions in the database.
We address the second limitation by building a generic model
using interactions involving multiple doctors and patients.
In the long run, the model can be used as an annotation
tool for automatic labeling of physician gaze when analyzing
physician-patient interactions in clinical settings.

III. METHODOLOGY

A. Data

The current database consists of 101 interactions between
10 doctors and 101 patients which was performed through
the University of Wisconsin-Madison at five primary care

clinics in 2011 [18]. Every patient in the study agreed to
be videotaped and to participate in the study and signed a
consent form. The 101 interactions were highly dynamic,
as the lighting, camera placement, and number of people
fluctuated between each interaction. These 101 interactions
were captured using 3 different cameras (Fig. 1) – each placed
at different positions and angles in the clinic. Patient-Centered
camera – focuses on the patient’s chair, Doctor-Centered cam-
era – focuses on the doctor’s face and Wide-Angle camera –
captures both the patient and the doctor from a wide angle. All
three cameras recorded the clinical interactions at 30 frames
per second (fps). The Multi-Channel view is a collection of
the Patient-Centered, Doctor-Centered and the Wide-Angle
frames capturing at a given time. Only the doctor-centered
and the patient-centered videos were used in the analysis as the
subjects captured using wide-angle camera were at a distance
and thus, small optical flow changes could not be captured.
The doctor-centered and patient-centered camera focuses on
the doctor and the patient respectively capturing subtle optical



TABLE I
INTERACTIONS AVAILABLE PER DOCTOR, DATA FOR THIS STUDY AND RELATIONSHIP TO PREVIOUS WORK

Doctor Index Interaction indices Selected Interactions Previous work by Gutstein [15] - [17]
1 01, 02, 59, 66, 67, 73, 74, 89 - 91 01, 02 01, 02, 59, 66, 67, 90
2 03 - 08, 35 - 37 06, 36 -
3 17, 21, 26 - 31, 39, 40 17, 29 -
4 09 - 20, 25 09, 10 -
5 22 - 24, 41 - 43, 51 - 54 41, 42 -
6 32 - 34, 45, 48 - 50, 69, 80, 81 34, 49 -
7 38, 44, 46, 47, 55 - 58, 61, 62 38, 55 -
8 60, 63 - 65, 68, 71, 72, 75, 76, 92 64, 65 60, 63, 64, 65, 68, 75
9 70, 85 - 88, 93 - 97 - -

10 77 - 79, 82 - 84, 98 - 101 77, 78 77, 78, 84, 98, 101

flow changes
Further, human encoders annotated the entire duration of the

video for each interaction. The manual annotations encoded
physician communication, physician gaze, and patient gaze
through the Noldus Observer XT software [19]. The start
and end time as well as duration were recorded for each
of the patient and physician behaviors. There were different
annotations determining where the physician gazes at a given
time. This study investigates the automatic labeling of the
physician’s gaze using two levels. The problem at hand is a
binary classification task where physician’s gaze is classified.
If the physician was deemed to be looking at the patient, then it
was labeled as Patient. And, if the physician was not deemed
to be looking at the patient, then it was labeled as Other.
Since our analysis was performed on a frame level basis, all
the original annotations were mapped to each frame. Of all
the frames available for analysis, the physician’s gaze was
directed at the patient for 45% of the frames and physician’s
gaze directed elsewhere 55% of the frames.

Table I shows the 101 interactions available in the study
along with their distribution per doctor, the interactions used
in this analysis and the interactions used in previous work by
Gutstein et al., [15] [17]. Of the 101 interactions, 18 interac-
tions from 9 doctors were used. To have a consistent number
of interactions from each doctor, we choose 2 interactions
each from 9 doctors. We set a few guidelines in choosing
the interactions - one, the patient stays on the right side
and the doctor stays on the left side of the patient-centered
camera, two - the doctor’s face has to be fully captured by
the doctor-centered camera (the doctor tends to move away
from the camera during physical examination of the patient).
We choose 2 interactions from each doctor which followed
these guidelines. Of the 10 doctors, no interaction from doctor
#9 followed these guidelines and hence we chose to ignore
interactions from doctor #9. Therefore, we have 2 interactions
each from 9 doctors adding up to a total of 18 interactions.

B. Feature Extraction

First, we detect the patients and the doctors in the patient-
centered videos and the doctors from the doctor-centered
videos. We follow the approach used by Gutstein [15] - [17]
to extract features such as bounding box coordinates of the

patient and the physician location using You Only Look Once
algorithm [20] and optical flow measurements [21].

The YOLO algorithm identifies and returns one bounding
box around the patient and one bounding box around the
physician. Each bounding box has 4 location-based coordinate
features the starting point of the bounding box in the horizontal
direction, the starting point of the bounding box in the vertical
direction, the width of the bounding box and the height of the
bounding box. The bounding box information of the patient-
centered physician and patient-centered patient adds up to total
of 8 bounding box location-based coordinate features. The
optical flow estimates were confined to these two regions.
Since the doctor was exclusively present in the doctor-centered
video sequence, the optical flow estimates were computed
from the entire frame for the doctor-centered physician. In
total, 60 optical flow features for each of the regions of
interest – Patient-Centered Physician, Patient-Centered Patient
and Doctor-Centered Physician - were computed adding up to
a total of 180 optical flow features. Fig. 2 shows the identified
YOLO bounding boxes in the patient-centered image and the
optical flow measurements in three different regions of interest.
In total, 188 features (180 optical flow measurements + 8
YOLO bounding box values) were extracted from the three
regions in two cameras.

Optical flow measurements are used to estimate the motion
of patient and the physician between successive frames. For
each region-based optical flow computation, 15 summary
statistic variables were calculated to aggregate the values of
each of the following optical flow features – velocityU (x
component of velocity), velocityV (y component of velocity),
orientation, and magnitude. The 15 summary statistics are as
follows - maximum, minimum, 25th percentile, 50th percentile,
75th percentile, sum, sum squared, skewness, kurtosis, range,
mean, variance, standard deviation, covariance, and non-zero
values. The statistic non-zero values refers to the number of
non-zero values for the designated feature in the region of
interest (Patient-Centered Physician, Patient-Centered Patient,
or Physician-Centered frame) for optical flow measurements.
Due to the large number of null optical flow values regarding
velocityU, velocityV, orientation, and magnitude, the variables
for velocityU, velocityV, orientations and magnitude - other
than non-zero values were calculated for the top 25th percentile
of feature values with respect to the regions of interest.



Fig. 2. An example of a frame with bounding boxes based on YOLO, and marked optical flow vectors in patient-centered and doctor-centered views [15]
[17]

C. Physician Gaze Prediction

Because of camera angle and the nature of the clinical room,
the patient-centered doctor region was not detected consis-
tently and therefore, many of these regions were missing.
To eliminate this limitation, the physician regions detected
in the patient-centered videos were not considered and thus,
the feature space was reduced from 188 to 124 by remov-
ing the location-based coordinate features and optical flow
measurements related to patient-centered doctor. Therefore,
we only used features related to the patient-centered patient
and doctor-centered doctor regions for model building. To
validate the robustness of our approach, we chose to perform
5 different experiments. In each experiment, interactions from
8 doctors out of the 9 doctors were used for training, testing
and validation of the model. The interactions from the other
doctor were used as an additional validation set.

In other words, in each experiment, the idea is to build a
model using interactions from 8 doctors for training, testing
and validating the model. In addition to the validation set,
we build an additional validation set using interactions from
one doctor which was not a part of the training. The training,
testing and validation data comes from random sampling of
data from 8 doctors and the additional validation set comes
from the other doctor. The purpose of the additional validation
set is to evaluate the generalizability of the model to com-
pletely new data differing in terms of clinical arrangements,
camera positioning and doctor. In each of the 5 experiments,
interactions from a different doctor were used as the additional
validation set (Table II). Two interactions from each of the
other 8 doctors were split into training and testing data (70%
of all the frames) and validation data (30% of all the frames).
For each experiment, one random forest model was trained
and tuned and the performance of the model is reported in
Table IV. To be noted is that the model obtained optimal
results when the number of features used to train each tree
in a random forest model was 11 out of the 124 features.

We also investigated the prediction power of the model
when considering the time component of the video data. In
other words, build the model on frame sequences of a certain

TABLE II
INTERACTIONS USED IN THE ADDITIONAL VALIDATION SET FOR EACH

EXPERIMENT

Interactions used for additional validation set
Model Doctor Interactions

Model R1 Doctor 1 Interactions 01, 02
Model R2 Doctor 3 Interactions 17, 29
Model R3 Doctor 4 Interactions 09, 10
Model R4 Doctor 6 Interactions 34, 49
Model R5 Doctor 7 Interactions 38, 55

length and make predictions for the next sequence of frames
in the interaction. We performed 6 different experiments. In
the first 3 experiments, a sequence of 4 minutes was used
for training, and a 1-minute sequence of frames was used
each for testing and validation. In the other 3 experiments, a
sequence of 5 minutes was used for training, and a 30-second
sequence of frames was used each for testing and validation
The combinations are summarized in Table III. A random
forest classifier was built on sequences of annotated frames
to predict the annotations in future sequences.

TABLE III
DIFFERENT SEQUENCES OF FRAMES USED FOR TRAINING, TESTING AND

VALIDATION

Duration of the video used
Model Training Testing Validation

Model S1 00:01 – 04:00 04:01 – 05:00 05:01 – 06:00
Model S2 01:01 – 05:00 00:01 – 01:00 05:01 – 06:00
Model S3 02:01 – 06:00 01:01 – 02:00 00:01 – 01:00
Model S4 00:01 - 05:00 05:01 – 05:30 05:31 – 06:00
Model S5 00:01 – 00:30 00:31 – 05:30 05:31 – 06:00
Model S6 01:01 – 06:00 00:31 – 01:00 00:01 – 00:30

IV. RESULTS

The results of the random forest classifier are presented
in Table IV. The models show consistent performance on
the training, testing and validation data across models. The
models predict physician’s gaze on any unseen data within
the interactions it was trained on with relatively high accuracy



TABLE IV
PERFORMANCE OF THE MODELS ON DIFFERENT DATA SETS

Optimal random forest model parameters Performance of the model on different data sets
Model No. of Trees No. of features Max. Depth Min. samples for split Training Testing Validation Additional Validation

Model R1 400 11 30 10 98.24% 83.54% 83.60% 41.54%
Model R2 350 11 35 10 98.43% 83.58% 83.88% 30.46%
Model R3 400 11 30 5 98.30% 83.75% 84.01% 30.52%
Model R4 400 11 35 10 98.18% 83.70% 84.01% 42.34%
Model R5 450 11 30 10 98.29% 83.84% 84.19% 36.22%

TABLE V
PERFORMANCE OF THE MODELS ON DIFFERENT SEQUENTIAL DATA SETS

Optimal random forest model parameters Performance of the model on different data sets
Model No. of Trees No. of features Max. Depth Min. samples for split Training Testing Validation

Model S1 400 11 30 10 96.56% 66.19% 58.93%
Model S2 400 11 40 10 96.38% 64.09% 66.12%
Model S3 450 11 40 10 96.78% 62.33% 59.53%
Model S4 450 11 35 10 95.09% 66.86% 65.04%
Model S5 450 11 40 5 95.10% 62.23% 68.78%
Model S6 450 11 40 10 95.08% 69.73% 60.01%

(average accuracy of 83.93% by 5 models on validation set
from Table IV). However, the performance of the model on the
additional validation set was significantly low. The interactions
used for the additional validation set is of a new doctor
which was not seen by the model during training. It was
learnt through manual analysis of the video interactions that
there lie differences in the camera angle, the projections, the
objects present in the clinical setting, the difference in the
room itself. Studies also show that there exist distinguishable
patterns of gaze between the doctors. This significant drop
in the performance of the model could be explained that
the model did not capture the underlying differences in the
clinical setting and the camera projections which is crucial
in a computer vision problem. Even though we show poor
results on the additional validation set, the performance of
the model on validation set is enough to conclude that this
model could be used to predict physician’s gaze on any unseen
data within learnt clinical settings and camera projections and
within doctors already learnt. To predict the physician’s gaze
on completely new interaction, a 6-minute video with human
annotations on physician’s gaze is required to retrain the model
with additional data.

The evaluation of the model using sequences of frames is
shown in Table V. The results suggest that with increase in
the duration of sequences for training, the performance on
the validation set improved. The first 3 models use 4 minutes
of sequences for training, whereas the last 3 models use 5
minutes for training. Clearly, the performance of the models on
validation set increased. There different models built using 4
minutes of video interactions were able to produce an average
accuracy of 61.52%, and 64.61% using 5 minutes of data. In
addition to it, in our previous analysis, which is not reported
in this work, we had noted that the models trained using 3
minutes of video had produced an average accuracy of 58.84%.
The data that we use here to classify physician gaze are optical
flow motion of the patient and the doctor. It is very clear from

our analysis that the performance of the models increased with
additional duration of video. Through our video data analysis,
it was found that the doctors and the patient exhibit variety
of motions throughout the interaction (example: looking at
the chart, using EHR technology, typing over the keyboard,
performing physical examination, talking to the patient and
much more). The 101 interactions on an average last over
28 minutes approximately and 6 minutes of data we use
is very small to capture the different motions. The analysis
suggests that the performance on the unseen sequences could
be improved when the model learns different motions of the
doctor and patient.

V. CONCLUSION AND FUTURE WORK

The importance of the patient-centered doctor, patient-
centered patient and doctor-centered doctor optical flow es-
timates in gaze recognition were studied and it was found that
the patient-centered doctor were redundant by feature selection
techniques and the removal of patient-centered doctor informa-
tion had no impact on the performance of the gaze recognition
model. Further, the interactions from multiple doctors were
used to build a random forest model and our results show
that our generic model could be used to predict physician
gaze with over an average accuracy of 83.93%. The results
show that the model can only be used within interactions
from doctors it was trained on. The results show that to
predict the physician’s gaze on completely new interaction,
a 6-minute video with human annotations on physician’s gaze
is required to retrain the model with additional data. The
average video duration for 101 interactions is 28 minutes and
being able to annotate the the remaining 22 minutes of videos
with 6-minute of labelled data shows that 80% of human
labor could be reduced. Given the tremendous amount of
human labor which goes in manually annotating the videos, we
show that this methodology could be used reduce the human
labor by approximately 80%. This works shows promise in



terms of reducing human labor and can be extended to other
interactions in the database and beyond. This work has used
18 interactions of the 101 interactions in the study and this
work can be expanded to the other interactions of the study.
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